粉丝 0
评论 0
奥雷姆引进坐标思想和分数指数、无理数指数的概念 

奥雷姆,法国数学家、物理学家、天文学家、哲学家。早年就学于巴黎大学,主要学神学,后在该校教神学曾任该校纳瓦拉学院院长。1362年去鲁昂大教堂担任神职。后又奉法王査理五世之召,在巴黎将亚里士多德的一些著作由拉丁文翻译成法文。1377年起任利雪(今法国东北部位卡尔瓦多斯省境内)的主教。

奥雷姆在许多领域都有杰出贡献。在数学方面,奥雷姆有两项突破性的工作(约1360年):一是引进坐标思想,为解析几何学的创立做好了准备;二是引进分数指数和无理数指数的概念,突破了幂指数只能是正整数的限制。

奥雷姆在他的《论形态幅度》等著作中为研究变化与变化率而创建了形态幅度原理(或称图线原理)。他借用“经度”和“纬度”这两个地理学术语来描述他的“图线”。例如,为了表示随时间而变的速度,他用一条水平线上的点表示不同的时刻,称为经度;不同时刻的速度用一条条长度正比于速度大小的竖直线段表示,称为纬度;竖直线段顶点所连成的线则称为“顶点坐标”。显然,经度相当于现在的横坐标,纬度相当于纵坐标,而“顶点坐标”则相当于函数图像。

奥雷姆在他的另一本著作《比例算法》中引进了分数指数的概念,并规定了分数指数的记法(尽管他的记法不同于现在)和一些使用规则。他甚至还把指数推广到无理数的情形。奥雷姆的这些成就,对中世纪的欧洲数学产生了深远的影响。

阅读    9111